skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramachandra, Abhay B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cardiovascular disease (CVD) remains one of the leading causes of mortality worldwide. Computational medicine and digital twins hold promise in mitigating the impact and prevalence of CVD. Recent advances in image-based computational methods have enabled the quantification of functional and biologically important metrics that would otherwise be difficult to obtain from the standard of care. However, significant challenges remain due to the manual/semi-automated nature of the processes and the domain expertise required to perform them. This paper addresses these challenges by proposing a novel framework that builds on our recently developed direct point cloud-to-CFD approach using immersogeometric analysis. The proposed method leverages advanced auto-segmentation techniques to extract medically relevant geometries as point clouds, which are then directly used for CFD simulations. The framework is validated using benchmark flow problems with analytical and computational solutions and is subsequently applied to patient-specific images to demonstrate its capabilities. The results highlight the method's ability to facilitate rapid CFD simulations directly on point clouds derived from patient scans, underscoring its potential to accelerate the image-to-simulation pipeline and enable the tractability of cardiovascular digital twins. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026